Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 147
Filter
1.
J Clin Invest ; 2024 May 09.
Article in English | MEDLINE | ID: mdl-38722695

ABSTRACT

Spinal Muscular Atrophy (SMA) is typically characterized as a motor neuron disease, but extra-neuronal phenotypes are present in almost every organ in severely affected patients and animal models. Extra-neuronal phenotypes were previously underappreciated as patients with severe SMA phenotypes usually died in infancy; however, with current treatments for motor neurons increasing patient lifespan, impaired function of peripheral organs may develop into significant future comorbidities and lead to new treatment-modified phenotypes. Fatty liver is seen in SMA animal models , but generalizability to patients and whether this is due to hepatocyte-intrinsic Survival Motor Neuron (SMN) protein deficiency and/or subsequent to skeletal muscle denervation is unknown. If liver pathology in SMA is SMN-dependent and hepatocyte-intrinsic, this suggests SMN repleting therapies must target extra-neuronal tissues and motor neurons for optimal patient outcome. Here we showed that fatty liver is present in SMA and that SMA patient-specific iHeps were susceptible to steatosis. Using proteomics, functional studies and CRISPR/Cas9 gene editing, we confirmed that fatty liver in SMA is a primary SMN-dependent hepatocyte-intrinsic liver defect associated with mitochondrial and other hepatic metabolism implications. These pathologies require monitoring and indicate need for systematic clinical surveillance and additional and/or combinatorial therapies to ensure continued SMA patient health.

2.
JCI Insight ; 9(8)2024 Mar 07.
Article in English | MEDLINE | ID: mdl-38451736

ABSTRACT

Accumulation of sphingolipids, especially sphingosines, in the lysosomes is a key driver of several lysosomal storage diseases. The transport mechanism for sphingolipids from the lysosome remains unclear. Here, we identified SPNS1, which shares the highest homology to SPNS2, a sphingosine-1-phosphate (S1P) transporter, functions as a transporter for lysolipids from the lysosome. We generated Spns1-KO cells and mice and employed lipidomic and metabolomic approaches to reveal SPNS1 ligand identity. Global KO of Spns1 caused embryonic lethality between E12.5 and E13.5 and an accumulation of sphingosine, lysophosphatidylcholines (LPC), and lysophosphatidylethanolamines (LPE) in the fetal livers. Similarly, metabolomic analysis of livers from postnatal Spns1-KO mice presented an accumulation of sphingosines and lysoglycerophospholipids including LPC and LPE. Subsequently, biochemical assays showed that SPNS1 is required for LPC and sphingosine release from lysosomes. The accumulation of these lysolipids in the lysosomes of Spns1-KO mice affected liver functions and altered the PI3K/AKT signaling pathway. Furthermore, we identified 3 human siblings with a homozygous variant in the SPNS1 gene. These patients suffer from developmental delay, neurological impairment, intellectual disability, and cerebellar hypoplasia. These results reveal a critical role of SPNS1 as a promiscuous lysolipid transporter in the lysosomes and link its physiological functions with lysosomal storage diseases.


Subject(s)
Disease Models, Animal , Lysosomal Storage Diseases , Lysosomes , Mice, Knockout , Animals , Female , Humans , Male , Mice , Liver/metabolism , Lysophospholipids/metabolism , Lysosomal Storage Diseases/metabolism , Lysosomal Storage Diseases/genetics , Lysosomal Storage Diseases/pathology , Lysosomes/metabolism , Sphingolipids/metabolism , Sphingosine/analogs & derivatives , Sphingosine/metabolism
3.
J Peripher Nerv Syst ; 28(3): 476-489, 2023 09.
Article in English | MEDLINE | ID: mdl-37483146

ABSTRACT

BACKGROUND AND AIMS: Cisplatin is a chemotherapeutic agent for many types of cancer. The neurotoxicity of cisplatin includes neuropathy and allodynia. We aimed to study structural changes by using CYM54-78, attenuating cisplatin-induced neuropathy and blocking the pathogenesis in neurons, and promoting axonal regeneration. METHODS: TEM (transmission electron microscopy) was used to distinguish ultrastructural changes in dorsal root ganglion (DRG) and dorsal rootlets (DR) between rats treated with cisplatin alone and rats co-treated with cisplatin and sphingosine -1-phosphate receptor2 (S1P2) agonist, CYM-5478. RESULTS: In DRG of rats treated with cisplatin alone, TEM micrographs showed necrosis and apoptotic cells. Neuronal cytoplasm showed numerous vacuole (stage C) and swelling (stage B➔C) mitochondrial degeneration. Neurons in DRG from cisplatin+CYM-5478 group showed a higher percentage of healthy mitochondria (from 5.3% to 75.6%) than those treated with cisplatin alone. DR of cisplatin only group showed abnormal axoplasm, axolemma, and focal detached myelin sheaths, especially in Aδ (fast pain) and Aß (touch) fibers, and revealed collateral branches that sprouted from Aß fibers, which is characteristic of allodynia. Moreover, vasoconstriction was observed in DRG and DR. Rats in cisplatin+CYM-5478 group showed not only fewer abnormal structures than those in cisplatin only group, but also showed Bands of Büngner and onion bulb-like structures, which are characteristic of nerve regeneration. INTERPRETATION: Together with our previous study, showed that CYM-5478 attenuated neuropathy and allodynia in a rat model of cisplatin-induced neuropathy, these results suggest S1P2 agonists as a potential approach the for treatment of cancer due to the reduction of side effects of cisplatin.


Subject(s)
Cisplatin , Peripheral Nervous System Diseases , Rats , Animals , Cisplatin/adverse effects , Ganglia, Spinal , Sphingosine-1-Phosphate Receptors , Hyperalgesia/chemically induced , Peripheral Nervous System Diseases/chemically induced , Neurons , Immunologic Factors/pharmacology
4.
ACS Nano ; 17(12): 11593-11606, 2023 06 27.
Article in English | MEDLINE | ID: mdl-37306553

ABSTRACT

Present day strategies for delivery of wireless photodynamic therapy (PDT) to deep-seated targets are limited by the inadequacy of irradiance and insufficient therapeutic depth. Here we report the design and preclinical validation of a flexible wireless upconversion nanoparticle (UCNP) implant (SIRIUS) that is capable of large field, high intensity illumination for PDT of deep-seated tumors. The implant achieves this by incorporating submicrometer core-shell-shell NaYF4 UCNPs into its design, which significantly enhances upconversion efficiency and mitigates light loss from surface quenching. We demonstrate the efficacy of SIRIUS UCNP implant mediated PDT in preclinical breast cancer disease models. In our in vitro experiments, SIRIUS directed 5-Aminolevulinic Acid (5-ALA) based wireless PDT leads to significant reactive oxygen species (ROS) generation and tumor apoptosis in hormonal receptor+/HER2+ (MCF7) and triple-negative (MDA-MB-231) breast cancer cell lines. In our in vivo rodent model, SIRIUS-driven PDT is shown to be significant in regressing tumors when applied to orthotopically inoculated breast tumors. Following successful preclinical validation, we also describe a clinical prototype of UCNP breast implant with potential dual cosmetic and onco-therapeutic functions. SIRIUS is an upconversion breast implant for wireless PDT that fulfils all the design prerequisites necessary for seamless clinical translation.


Subject(s)
Breast Implants , Nanoparticles , Photochemotherapy , Photosensitizing Agents/pharmacology , Photosensitizing Agents/therapeutic use , Aminolevulinic Acid , Cell Line, Tumor
5.
Biomedicines ; 11(4)2023 Apr 15.
Article in English | MEDLINE | ID: mdl-37189799

ABSTRACT

Although there is increasing evidence that oxidative stress and inflammation induced by COVID-19 may contribute to increased risk and severity of thromboses, the underlying mechanism(s) remain to be understood. The purpose of this review is to highlight the role of blood lipids in association with thrombosis events observed in COVID-19 patients. Among different types of phospholipases A2 that target cell membrane phospholipids, there is increasing focus on the inflammatory secretory phospholipase A2 IIA (sPLA2-IIA), which is associated with the severity of COVID-19. Analysis indicates increased sPLA2-IIA levels together with eicosanoids in the sera of COVID patients. sPLA2 could metabolise phospholipids in platelets, erythrocytes, and endothelial cells to produce arachidonic acid (ARA) and lysophospholipids. Arachidonic acid in platelets is metabolised to prostaglandin H2 and thromboxane A2, known for their pro-coagulation and vasoconstrictive properties. Lysophospholipids, such as lysophosphatidylcholine, could be metabolised by autotaxin (ATX) and further converted to lysophosphatidic acid (LPA). Increased ATX has been found in the serum of patients with COVID-19, and LPA has recently been found to induce NETosis, a clotting mechanism triggered by the release of extracellular fibres from neutrophils and a key feature of the COVID-19 hypercoagulable state. PLA2 could also catalyse the formation of platelet activating factor (PAF) from membrane ether phospholipids. Many of the above lipid mediators are increased in the blood of patients with COVID-19. Together, findings from analyses of blood lipids in COVID-19 patients suggest an important role for metabolites of sPLA2-IIA in COVID-19-associated coagulopathy (CAC).

6.
Int J Mol Sci ; 24(6)2023 Mar 13.
Article in English | MEDLINE | ID: mdl-36982572

ABSTRACT

Recent findings have suggested that the natural compound ergothioneine (ET), which is synthesised by certain fungi and bacteria, has considerable cytoprotective potential. We previously demonstrated the anti-inflammatory effects of ET on 7-ketocholesterol (7KC)-induced endothelial injury in human blood-brain barrier endothelial cells (hCMEC/D3). 7KC is an oxidised form of cholesterol present in atheromatous plaques and the sera of patients with hypercholesterolaemia and diabetes mellitus. The aim of this study was to elucidate the protective effect of ET on 7KC-induced mitochondrial damage. Exposure of human brain endothelial cells to 7KC led to a loss of cell viability, together with an increase in intracellular free calcium levels, increased cellular and mitochondrial reactive oxygen species, a decrease in mitochondrial membrane potential, reductions in ATP levels, and increases in mRNA expression of TFAM, Nrf2, IL-1ß, IL-6 and IL-8. These effects were significantly decreased by ET. Protective effects of ET were diminished when endothelial cells were coincubated with verapamil hydrochloride (VHCL), a nonspecific inhibitor of the ET transporter OCTN1 (SLC22A4). This outcome demonstrates that ET-mediated protection against 7KC-induced mitochondrial damage occurred intracellularly and not through direct interaction with 7KC. OCTN1 mRNA expression itself was significantly increased in endothelial cells after 7KC treatment, consistent with the notion that stress and injury may increase ET uptake. Our results indicate that ET can protect against 7KC-induced mitochondrial injury in brain endothelial cells.


Subject(s)
Ergothioneine , Humans , Ergothioneine/pharmacology , Endothelial Cells/metabolism , Ketocholesterols/pharmacology , Brain/metabolism , RNA, Messenger
7.
Neuromolecular Med ; 25(1): 1-13, 2023 03.
Article in English | MEDLINE | ID: mdl-35776238

ABSTRACT

Research advances have shed new insight into cellular pathways contributing to PD pathogenesis and offer increasingly compelling therapeutic targets. In this review, we made a broad survey of the published literature that report possible disease-modifying effects on PD. While there are many studies that demonstrate benefits for various therapies for PD in animal and human studies, we confined our search to human "randomised controlled trials" and with the key words "neuroprotection" or "disease-modifying". It is hoped that through studying the results of these trials, we might clarify possible mechanisms that underlie idiopathic PD. This contrasts with studying the effect of pathophysiology of familial PD, which could be carried out by gene knockouts and animal models. Randomised controlled trials indicate promising effects of MAO-B inhibitors, dopamine agonists, NMDA receptor antagonists, metabotropic glutamate receptor antagonists, therapies related to improving glucose utilization and energy production, therapies related to reduction of excitotoxicity and oxidative stress, statin use, therapies related to iron chelation, therapies related to the use of phytochemicals, and therapies related to physical exercise and brain reward pathway on slowing PD progression. Cumulatively, these approaches fall into two categories: direct enhancement of dopaminergic signalling, and reduction of neurodegeneration. Overlaps between the two categories result in challenges in distinguishing between symptomatic versus disease-modifying effects with current clinical trial designs. Nevertheless, a broad-based approach allows us to consider all possible therapeutic avenues which may be neuroprotective. While the traditional standard of care focuses on symptomatic management with dopaminergic drugs, more recent approaches suggest ways to preserve dopaminergic neurons by attenuating excitotoxicity and oxidative stress.


Subject(s)
Neuroprotective Agents , Parkinson Disease , Animals , Humans , Parkinson Disease/metabolism , Randomized Controlled Trials as Topic , Dopamine Agonists/therapeutic use , Dopamine/metabolism , Brain/metabolism , Neuroprotective Agents/pharmacology , Neuroprotective Agents/therapeutic use
8.
Neuromolecular Med ; 25(2): 205-216, 2023 06.
Article in English | MEDLINE | ID: mdl-36261765

ABSTRACT

Ergothioneine (ET) is a naturally occurring antioxidant and cytoprotective agent that is synthesized by fungi and certain bacteria. Recent studies have shown a beneficial effect of ET on neurological functions, including cognition and animal models of depression. The aim of this study is to elucidate a possible effect of ET in rodent models of stroke. Post-ischemic intracerebroventricular (i.c.v.) infusion of ET significantly reduced brain infarct volume by as early as 1 day after infusion in rats, as shown by triphenyltetrazolium chloride (TTC) assay. There was a dose-dependent increase in protection, from 50 to 200 ng of ET infusion. These results suggest that ET could have a protective effect on CNS neurons. We next elucidated the effect of systemic ET on brain infarct volume in mice after stroke. Daily i.p. injection of 35 mg/kg ET (the first dose being administered 3 h after stroke) had no significant effect on infarct volume. However, daily i.p. injections of 70 mg/kg, 100 mg/kg, 125 mg/kg and 150 mg/kg ET, with the first dose administered 3 h after stroke, significantly decreased infarct volume at 7 days after vessel occlusion in mice. In order to elucidate at what time interval during the 7 days there could be effective protection, a second set of experiments was carried out in mice, using one of the effective loading protocols, i.e. 125 mg/kg i.p. ET but the brains were analyzed at 1, 4 and 7 days post-stroke by MRI. We found that ET was already protective against neuronal injury and decreased the size of the brain infarct from as early as 1 day post-stroke. Behavioral experiments carried out on a third set of mice (using 125 mg/kg i.p. ET) showed that this was accompanied by significant improvements in certain behaviors (pole test) at 1 day after stroke. Together, results of this study indicate that i.c.v. and systemic ET are effective in reducing brain infarct volume after stroke in rodent models.


Subject(s)
Brain Ischemia , Ergothioneine , Stroke , Rats , Mice , Animals , Ergothioneine/pharmacology , Ergothioneine/therapeutic use , Rodentia , Infarction, Middle Cerebral Artery/complications , Stroke/drug therapy , Stroke/complications , Brain Ischemia/drug therapy , Brain Ischemia/complications , Disease Models, Animal
9.
Molecules ; 27(11)2022 Jun 04.
Article in English | MEDLINE | ID: mdl-35684542

ABSTRACT

Recent studies on the ethnomedicinal use of Clinacanthus nutans suggest promising anti-inflammatory, anti-tumorigenic, and antiviral properties for this plant. Extraction of the leaves with polar and nonpolar solvents has yielded many C-glycosyl flavones, including schaftoside, isoorientin, orientin, isovitexin, and vitexin. Aside from studies with different extracts, there is increasing interest to understand the properties of these components, especially regarding their ability to exert anti-inflammatory effects on cells and tissues. A major focus for this review is to obtain information on the effects of C. nutans extracts and its phytochemical components on inflammatory signaling pathways in the peripheral and central nervous system. Particular emphasis is placed on their role to target the Toll-like receptor 4 (TLR4)-NF-kB pathway and pro-inflammatory cytokines, the antioxidant defense pathway involving nuclear factor erythroid-2-related factor 2 (NRF2) and heme oxygenase 1 (HO-1); and the phospholipase A2 (PLA2) pathway linking to cyclooxygenase-2 (COX-2) and production of eicosanoids. The ability to provide a better understanding of the molecular targets and mechanism of action of C. nutans extracts and their phytochemical components should encourage future studies to develop new therapeutic strategies for better use of this herb to combat inflammatory diseases.


Subject(s)
Acanthaceae , Plant Extracts , Acanthaceae/chemistry , Anti-Inflammatory Agents/analysis , Anti-Inflammatory Agents/pharmacology , Phytochemicals/analysis , Phytochemicals/pharmacology , Plant Extracts/chemistry , Plant Leaves/chemistry
10.
Neuromolecular Med ; 24(4): 363-373, 2022 12.
Article in English | MEDLINE | ID: mdl-35451691

ABSTRACT

The SARS-CoV-2 virus gains entry to cells by binding to angiotensin-converting enzyme 2 (ACE2). Since circumventricular organs and parts of the hypothalamus lack a blood-brain barrier, and immunohistochemical studies demonstrate that ACE2 is highly expressed in circumventricular organs which are intimately connected to the hypothalamus, and the hypothalamus itself, these might be easy entry points for SARS-CoV-2 into the brain via the circulation. High ACE2 protein expression is found in the subfornical organ, area postrema, and the paraventricular nucleus of the hypothalamus (PVH). The subfornical organ and PVH are parts of a circuit to regulate osmolarity in the blood, through the secretion of anti-diuretic hormone into the posterior pituitary. The PVH is also the stress response centre in the brain. It controls not only pre-ganglionic sympathetic neurons, but is also a source of corticotropin-releasing hormone, that induces the secretion of adrenocorticotropic hormone from the anterior pituitary. It is proposed that the function of ACE2 in the circumventricular organs and the PVH could be diminished by binding with SARS-CoV-2, thus leading to a reduction in the ACE2/Ang (1-7)/Mas receptor (MasR) signalling axis, that modulates ACE/Ang II/AT1R signalling. This could result in increased presympathetic activity/neuroendocrine secretion from the PVH, and effects on the hypothalamic-pituitary-adrenal axis activity. Besides the bloodstream, the hypothalamus might also be affected by SARS-CoV-2 via transneuronal spread along the olfactory/limbic pathways. Exploring potential therapeutic pathways to prevent or attenuate neurological symptoms of COVID-19, including drugs which modulate ACE signalling, remains an important area of unmet medical need.


Subject(s)
COVID-19 , Circumventricular Organs , Humans , Angiotensin-Converting Enzyme 2 , SARS-CoV-2 , Hypothalamo-Hypophyseal System , Pituitary-Adrenal System , Hypothalamus
11.
Cells ; 11(3)2022 01 28.
Article in English | MEDLINE | ID: mdl-35159267

ABSTRACT

Withanolide A is a naturally occurring phytochemical that is found in Ashwagandha (Withania somnifera, fam. Solanaceae) or Indian Ginseng. In the current study, we elucidated the effect of withanolide A on 7-ketocholesterol (7KC) induced injury in hCMEC/D3 human brain endothelial cells. 7KC is a cholesterol oxidation product or oxysterol that is present in atherosclerotic plaques and is elevated in the plasma of patients with hypercholesterolemia and/or diabetes mellitus. Results showed that withanolide A significantly reduced the effects of 7KC, which include loss of endothelial cell viability, increase in expression of pro-inflammatory genes-IL-1ß, IL-6, IL-8, TNF-α, cyclooxygenase-2 (COX-2), increased COX-2 enzyme activity, increased ROS formation, increased expression of inducible nitric oxide synthase and genes associated with blood clotting, including Factor 2/thrombin, Factor 8, von Willebrand factor, and thromboxane A synthase, and increased human thrombin enzyme activity. Some of the above effects of withanolide A on 7KC were reduced in the presence of the glucocorticoid receptor antagonist, mifepristone (RU486). These findings suggest that the glucocorticoid receptor could play a role in the cytoprotective, antioxidant, and anti-clotting effects of withanolide A against 7KC. Further studies are necessary to elucidate the detailed mechanisms of action of withanolide A against oxysterol-induced injury.


Subject(s)
Endothelial Cells , Receptors, Glucocorticoid , Brain , Cyclooxygenase 2/genetics , Humans , Ketocholesterols/pharmacology , Thrombin/pharmacology , Withanolides
12.
Ann Neurol ; 90(3): 490-505, 2021 09.
Article in English | MEDLINE | ID: mdl-34288055

ABSTRACT

OBJECTIVE: We utilized human midbrain-like organoids (hMLOs) generated from human pluripotent stem cells carrying glucocerebrosidase gene (GBA1) and α-synuclein (α-syn; SNCA) perturbations to investigate genotype-to-phenotype relationships in Parkinson disease, with the particular aim of recapitulating α-syn- and Lewy body-related pathologies and the process of neurodegeneration in the hMLO model. METHODS: We generated and characterized hMLOs from GBA1-/- and SNCA overexpressing isogenic embryonic stem cells and also generated Lewy body-like inclusions in GBA1/SNCA dual perturbation hMLOs and conduritol-b-epoxide-treated SNCA triplication hMLOs. RESULTS: We identified for the first time that the loss of glucocerebrosidase, coupled with wild-type α-syn overexpression, results in a substantial accumulation of detergent-resistant, ß-sheet-rich α-syn aggregates and Lewy body-like inclusions in hMLOs. These Lewy body-like inclusions exhibit a spherically symmetric morphology with an eosinophilic core, containing α-syn with ubiquitin, and can also be formed in Parkinson disease patient-derived hMLOs. We also demonstrate that impaired glucocerebrosidase function promotes the formation of Lewy body-like inclusions in hMLOs derived from patients carrying the SNCA triplication. INTERPRETATION: Taken together, the data indicate that our hMLOs harboring 2 major risk factors (glucocerebrosidase deficiency and wild-type α-syn overproduction) of Parkinson disease provide a tractable model to further elucidate the underlying mechanisms for progressive Lewy body formation. ANN NEUROL 2021;90:490-505.


Subject(s)
Glucosylceramidase/deficiency , Lewy Bodies/metabolism , Mesencephalon/metabolism , Mutation/physiology , Organoids/metabolism , alpha-Synuclein/biosynthesis , Embryonic Stem Cells/metabolism , Glucosylceramidase/genetics , Humans , Lewy Bodies/genetics , Lewy Bodies/pathology , Mesencephalon/pathology , Organoids/pathology , alpha-Synuclein/genetics
13.
Nat Commun ; 12(1): 2286, 2021 04 16.
Article in English | MEDLINE | ID: mdl-33863882

ABSTRACT

We recently discovered that Mfsd2b, which is the S1P exporter found in blood cells. Here, we report that Mfsd2b is critical for the release of all S1P species in both resting and activated platelets. We show that resting platelets store S1P in the cytoplasm. After activation, this S1P pool is delivered to the plasma membrane, where Mfsd2b is predominantly localized for export. Employing knockout mice of Mfsd2b, we reveal that platelets contribute a minor amount of plasma S1P. Nevertheless, Mfsd2b deletion in whole body or platelets impairs platelet morphology and functions. In particular, Mfsd2b knockout mice show significantly reduced thrombus formation. We show that loss of Mfsd2b affects intrinsic platelet functions as part of remarkable sphingolipid accumulation. These findings indicate that accumulation of sphingolipids including S1P by deletion of Mfsd2b strongly impairs platelet functions, which suggests that the transporter may be a target for the prevention of thrombotic disorders.


Subject(s)
Blood Platelets/metabolism , Lysophospholipids/metabolism , Membrane Proteins/metabolism , Sphingosine/analogs & derivatives , Venous Thrombosis/pathology , Animals , Blood Platelets/cytology , Blood Platelets/drug effects , Cytoplasm/metabolism , Disease Models, Animal , Fibrinolytic Agents/pharmacology , Fibrinolytic Agents/therapeutic use , Humans , Male , Membrane Proteins/antagonists & inhibitors , Membrane Proteins/genetics , Mice , Mice, Knockout , Platelet Function Tests , Sphingosine/metabolism , Venous Thrombosis/blood , Venous Thrombosis/diagnosis , Venous Thrombosis/drug therapy
14.
Neurochem Int ; 146: 105018, 2021 06.
Article in English | MEDLINE | ID: mdl-33727061

ABSTRACT

Sphingosine 1-phosphate (S1P) is a bioactive sphingolipid which modulates vascular integrity through its receptors, S1P1-S1P5. Notably, S1P2 has been shown to mediate the disruption of cerebrovascular integrity in vitro and in vivo. However, the mechanism underlying this process has not been fully elucidated. We evaluated the role of S1P2 in blood-brain barrier (BBB) disruption induced by lipopolysaccharide (LPS)-mediated systemic inflammation and found that BBB disruption and neutrophil infiltration were significantly attenuated in S1pr2-/- mice relative to S1pr2+/- littermates. This is concomitant with attenuation of LPS-induced transcriptional activation of IL-6 and downregulation of occludin. Furthermore, S1pr2-/- mice had significantly reduced expression of genes essential for neutrophil infiltration: Sele, Cxcl1, and Cxcl2. Conversely, pharmacological agonism of S1P2 induced transcriptional activation of E-selectin in vitro and in vivo. Although S1P2 does not appear to be required for activation of microglia, stimulation of microglial cells with the S1P2 potentiated the response of endothelial cells to LPS. These results demonstrate that S1P2 promotes LPS-induced neutrophil extravasation by inducing expression of endothelial adhesion molecule gene, Sele, and potentiating microglial inflammation of endothelial cells. It is likely that S1P2 is a mediator of cerebrovascular inflammation and represents a potential therapeutic target for neurodegenerative disease such as vascular cognitive impairment.


Subject(s)
Blood-Brain Barrier/metabolism , Leukocytes/metabolism , Neurodegenerative Diseases/metabolism , Sphingosine-1-Phosphate Receptors/deficiency , Animals , Blood-Brain Barrier/drug effects , Blood-Brain Barrier/pathology , Brain/drug effects , Brain/metabolism , Brain/pathology , Cell Line , Leukocytes/drug effects , Lipopolysaccharides/toxicity , Male , Mice , Mice, 129 Strain , Mice, Inbred C57BL , Mice, Knockout , Neurodegenerative Diseases/chemically induced , Neurodegenerative Diseases/pathology , Sphingosine-1-Phosphate Receptors/genetics
15.
Hum Mol Genet ; 30(1): 5-20, 2021 03 25.
Article in English | MEDLINE | ID: mdl-33395696

ABSTRACT

FEZ1-mediated axonal transport plays important roles in central nervous system development but its involvement in the peripheral nervous system is not well-characterized. FEZ1 is deleted in Jacobsen syndrome (JS), an 11q terminal deletion developmental disorder. JS patients display impaired psychomotor skills, including gross and fine motor delay, suggesting that FEZ1 deletion may be responsible for these phenotypes, given its association with the development of motor-related circuits. Supporting this hypothesis, our data show that FEZ1 is selectively expressed in the rat brain and spinal cord. Its levels progressively increase over the developmental course of human motor neurons (MN) derived from embryonic stem cells. Deletion of FEZ1 strongly impaired axon and dendrite development, and significantly delayed the transport of synaptic proteins into developing neurites. Concurring with these observations, Drosophila unc-76 mutants showed severe locomotion impairments, accompanied by a strong reduction of synaptic boutons at neuromuscular junctions. These abnormalities were ameliorated by pharmacological activation of UNC-51/ATG1, a FEZ1-activating kinase, with rapamycin and metformin. Collectively, the results highlight a role for FEZ1 in MN development and implicate its deletion as an underlying cause of motor impairments in JS patients.


Subject(s)
Adaptor Proteins, Signal Transducing/genetics , Cytoskeletal Proteins/genetics , Drosophila Proteins/genetics , Gait Disorders, Neurologic/genetics , Jacobsen Distal 11q Deletion Syndrome/genetics , Nerve Tissue Proteins/genetics , Animals , Autophagy-Related Protein-1 Homolog , Axonal Transport/genetics , Brain/metabolism , Brain/pathology , Gait Disorders, Neurologic/physiopathology , Humans , Jacobsen Distal 11q Deletion Syndrome/physiopathology , Locomotion/genetics , Locomotion/physiology , Motor Neurons/metabolism , Motor Neurons/pathology , Neurogenesis/genetics , Rats
16.
Mol Neurobiol ; 58(1): 106-117, 2021 Jan.
Article in English | MEDLINE | ID: mdl-32897518

ABSTRACT

The SARS-CoV-2 virus that is the cause of coronavirus disease 2019 (COVID-19) affects not only peripheral organs such as the lungs and blood vessels, but also the central nervous system (CNS)-as seen by effects on smell, taste, seizures, stroke, neuropathological findings and possibly, loss of control of respiration resulting in silent hypoxemia. COVID-19 induces an inflammatory response and, in severe cases, a cytokine storm that can damage the CNS. Antimalarials have unique properties that distinguish them from other anti-inflammatory drugs. (A) They are very lipophilic, which enhances their ability to cross the blood-brain barrier (BBB). Hence, they have the potential to act not only in the periphery but also in the CNS, and could be a useful addition to our limited armamentarium against the SARS-CoV-2 virus. (B) They are non-selective inhibitors of phospholipase A2 isoforms, including cytosolic phospholipase A2 (cPLA2). The latter is not only activated by cytokines but itself generates arachidonic acid, which is metabolized by cyclooxygenase (COX) to pro-inflammatory eicosanoids. Free radicals are produced in this process, which can lead to oxidative damage to the CNS. There are at least 4 ways that antimalarials could be useful in combating COVID-19. (1) They inhibit PLA2. (2) They are basic molecules capable of affecting the pH of lysosomes and inhibiting the activity of lysosomal enzymes. (3) They may affect the expression and Fe2+/H+ symporter activity of iron transporters such as divalent metal transporter 1 (DMT1), hence reducing iron accumulation in tissues and iron-catalysed free radical formation. (4) They could affect viral replication. The latter may be related to their effect on inhibition of PLA2 isoforms. Inhibition of cPLA2 impairs an early step of coronavirus replication in cell culture. In addition, a secretory PLA2 (sPLA2) isoform, PLA2G2D, has been shown to be essential for the lethality of SARS-CoV in mice. It is important to take note of what ongoing clinical trials on chloroquine and hydroxychloroquine can eventually tell us about the use of antimalarials and other anti-inflammatory agents, not only for the treatment of COVID-19, but also for neurovascular disorders such as stroke and vascular dementia.


Subject(s)
Antimalarials/therapeutic use , COVID-19 Drug Treatment , COVID-19/complications , Nervous System Diseases/drug therapy , Nervous System Diseases/etiology , SARS-CoV-2 , Animals , Antimalarials/metabolism , Blood-Brain Barrier/drug effects , Blood-Brain Barrier/metabolism , COVID-19/metabolism , Humans , Nervous System Diseases/metabolism , Treatment Outcome
17.
Neuromolecular Med ; 23(1): 199-210, 2021 03.
Article in English | MEDLINE | ID: mdl-33025396

ABSTRACT

Neuroinflammation has been shown to exacerbate ischemic brain injury, and is considered as a prime target for the development of stroke therapies. Clinacanthus nutans Lindau (C. nutans) is widely used in traditional medicine for treating insect bites, viral infection and cancer, due largely to its anti-oxidative and anti-inflammatory properties. Recently, we reported that an ethanol extract from the leaf of C. nutans could protect the brain against ischemia-triggered neuronal death and infarction. In order to further understand the molecular mechanism(s) for its beneficial effects, two experimental paradigms, namely, in vitro primary cortical neurons subjected to oxygen-glucose deprivation (OGD) and in vivo rat middle cerebral artery (MCA) occlusion, were used to dissect the anti-inflammatory effects of C. nutans extract. Using promoter assays, immunofluorescence staining, and loss-of-function (siRNA) approaches, we demonstrated that transient OGD led to marked induction of IL-1ß, IL-6 and TNFα, while pretreatment with C. nutans suppressed production of inflammatory cytokines in primary neurons. C. nutans inhibited IL-1ß transcription via preventing NF-κB/p65 nuclear translocation, and siRNA knockdown of either p65 or IL-1ß mitigated OGD-mediated neuronal death. Correspondingly, post-ischemic treatment of C. nutans attenuated IκBα degradation and decreased IL-1ß, IL-6 and TNFα production in the ischemic brain. Furthermore, IL-1ß siRNA post-ischemic treatment reduced cerebral infarct, thus mimicking the beneficial effects of C. nutans. In summary, our findings demonstrated the ability for C. nutans to suppress NF-κB nuclear translocation and inhibit IL-1ß transcription in ischemic models. Results further suggest the possibility for using C. nutans to prevent and treat stroke patients.


Subject(s)
Acanthaceae/chemistry , Anti-Inflammatory Agents/therapeutic use , Brain Ischemia/drug therapy , Infarction, Middle Cerebral Artery/drug therapy , Interleukin-1beta/biosynthesis , NF-kappa B/metabolism , Neurons/drug effects , Plant Extracts/pharmacology , Plant Leaves/chemistry , Plants, Medicinal/chemistry , Animals , Anti-Inflammatory Agents/pharmacology , Cell Death/drug effects , Cells, Cultured , Cerebral Infarction/pathology , Drug Evaluation, Preclinical , Glucose/pharmacology , Interleukin-1beta/genetics , Male , NF-KappaB Inhibitor alpha/metabolism , Oxygen/pharmacology , Phytotherapy , Promoter Regions, Genetic , Protein Transport/drug effects , RNA Interference , RNA, Small Interfering/genetics , Rats , Rats, Long-Evans , Transcription Factor RelA/antagonists & inhibitors , Transcription Factor RelA/genetics , Transcription, Genetic/drug effects , Tumor Necrosis Factor-alpha/biosynthesis , Tumor Necrosis Factor-alpha/genetics
18.
Cell Signal ; 79: 109890, 2021 03.
Article in English | MEDLINE | ID: mdl-33359087

ABSTRACT

Sphingolipids (SPs) are structurally diverse and represent one of the most quantitatively abundant classes of lipids in mammalian cells. In addition to their structural roles, many SP species are known to be bioactive mediators of essential cellular processes. Historically, studies have focused on SP species that contain the canonical 18­carbon, mono-unsaturated sphingoid backbone. However, increasingly sensitive analytical technologies, driven by advances in mass spectrometry, have facilitated the identification of previously under-appreciated, molecularly distinct SP species. Many of these less abundant species contain noncanonical backbones. Interestingly, a growing number of studies have identified clinical associations between these noncanonical SPs and disease, suggesting that there is functional significance to the alteration of SP backbone structure. For example, associations have been found between SP chain length and cardiovascular disease, pain, diabetes, and dementia. This review will provide an overview of the processes that are known to regulate noncanonical SP accumulation, describe the clinical correlations reported for these molecules, and review the experimental evidence for the potential functional implications of their dysregulation. It is likely that further scrutiny of noncanonical SPs may provide new insight into pathophysiological processes, serve as useful biomarkers for disease, and lead to the design of novel therapeutic strategies.


Subject(s)
Cardiovascular Diseases/metabolism , Dementia/metabolism , Diabetes Mellitus/metabolism , Lipid Metabolism , Pain/metabolism , Sphingolipids/metabolism , Animals , Cardiovascular Diseases/genetics , Dementia/genetics , Diabetes Mellitus/genetics , Humans , Pain/genetics , Sphingolipids/chemistry , Sphingolipids/genetics
19.
Neuromolecular Med ; 23(1): 47-67, 2021 03.
Article in English | MEDLINE | ID: mdl-33180310

ABSTRACT

Sphingosine 1-phosphates (S1Ps) are bioactive lipids that mediate a diverse range of effects through the activation of cognate receptors, S1P1-S1P5. Scrutiny of S1P-regulated pathways over the past three decades has identified important and occasionally counteracting functions in the brain and cerebrovascular system. For example, while S1P1 and S1P3 mediate proinflammatory effects on glial cells and directly promote endothelial cell barrier integrity, S1P2 is anti-inflammatory but disrupts barrier integrity. Cumulatively, there is significant preclinical evidence implicating critical roles for this pathway in regulating processes that drive cerebrovascular disease and vascular dementia, both being part of the continuum of vascular cognitive impairment (VCI). This is supported by clinical studies that have identified correlations between alterations of S1P and cognitive deficits. We review studies which proposed and evaluated potential mechanisms by which such alterations contribute to pathological S1P signaling that leads to VCI-associated chronic neuroinflammation and neurodegeneration. Notably, S1P receptors have divergent but overlapping expression patterns and demonstrate complex interactions. Therefore, the net effect produced by S1P represents the cumulative contributions of S1P receptors acting additively, synergistically, or antagonistically on the neural, vascular, and immune cells of the brain. Ultimately, an optimized therapeutic strategy that targets S1P signaling will have to consider these complex interactions.


Subject(s)
Dementia, Vascular/physiopathology , Lysophospholipids/physiology , Sphingosine-1-Phosphate Receptors/physiology , Sphingosine/analogs & derivatives , Aldehyde-Lyases/antagonists & inhibitors , Aldehyde-Lyases/physiology , Alzheimer Disease/physiopathology , Animals , Cerebrovascular Disorders/physiopathology , Clinical Trials as Topic , Drug Delivery Systems , Drug Evaluation, Preclinical , Fingolimod Hydrochloride/therapeutic use , Humans , Infarction, Middle Cerebral Artery/drug therapy , Infarction, Middle Cerebral Artery/physiopathology , Inflammation , Ischemic Stroke/drug therapy , Ischemic Stroke/physiopathology , Mice , Mice, Knockout , Neurodegenerative Diseases/drug therapy , Neurodegenerative Diseases/physiopathology , Phosphotransferases (Alcohol Group Acceptor)/antagonists & inhibitors , Phosphotransferases (Alcohol Group Acceptor)/deficiency , Phosphotransferases (Alcohol Group Acceptor)/physiology , Signal Transduction , Sphingosine/physiology , Sphingosine-1-Phosphate Receptors/drug effects
20.
Neuromolecular Med ; 23(1): 176-183, 2021 03.
Article in English | MEDLINE | ID: mdl-33085066

ABSTRACT

Clinacanthus nutans (Lindau) (C. nutans) has diverse uses in traditional herbal medicine for treating skin rashes, insect and snake bites, lesions caused by herpes simplex virus, diabetes mellitus and gout in Singapore, Malaysia, Indonesia, Thailand and China. We previously showed that C. nutans has the ability to modulate the induction of cytosolic phospholipase A2 (cPLA2) expression in SH-SY5Y cells through the inhibition of histone deacetylases (HDACs). In the current study, we elucidated the effect of C. nutans on the hCMEC/D3 human brain endothelial cell line. Endothelial cells are exposed to high levels of the cholesterol oxidation product, 7-ketocholesterol (7KC), in patients with cardiovascular disease and diabetes, and this process is thought to mediate pathological inflammation. 7KC induced a dose-dependent loss of hCMEC/D3 cell viability, and such damage was significantly inhibited by C. nutans leaf extracts but not stem extracts. 7KC also induced a marked increase in mRNA expression of pro-inflammatory cytokines, IL-1ß IL-6, IL-8, TNF-α and cyclooxygenase-2 (COX-2) in brain endothelial cells, and these increases were significantly inhibited by C. nutans leaf but not stem extracts. HPLC analyses showed that leaf extracts have a markedly different chemical profile compared to stem extracts, which might explain their different effects in counteracting 7KC-induced inflammation. Further study is necessary to identify the putative phytochemicals in C. nutans leaves that have anti-inflammatory properties.


Subject(s)
Acanthaceae/chemistry , Anti-Inflammatory Agents/pharmacology , Brain/cytology , Cytoprotection , Endothelial Cells/drug effects , Plant Extracts/pharmacology , Plant Leaves/chemistry , Plants, Medicinal/chemistry , Cell Line , Chromatography, High Pressure Liquid , Cyclooxygenase 2/biosynthesis , Cyclooxygenase 2/genetics , Cytokines/biosynthesis , Cytokines/genetics , Dose-Response Relationship, Drug , Drug Evaluation, Preclinical , Gene Expression Regulation/drug effects , Humans , Ketocholesterols/toxicity , Plant Stems/chemistry , RNA, Messenger/biosynthesis , RNA, Messenger/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...